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Solitary waves and supersonic reaction front in metastable solids
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Motivated by an increasing number of remarkable experimental observations on the role of pressure and
shear stress in solid reactions, explosions, and detonations, we present a simple one-dimensional model that
embodies nonlinear elasticity and dispersion as well as chemical or phase transformation. This generalization
of the Toda lattice provides an effective model for the description of the organization during an abrupt
transformation in a solid. One of the challenges is to capture both the equilibrium degrees of freedom as well
as to quantify the possible role of out-of-equilibrium perturbations. In the Toda lattice, we verify that the
particle velocities converge in distribution towards the Maxwell-Boltzmann distribution, thus allowing us to
define a bonafide temperature. In addition, the balance between nonlinearity and wave dispersion may create
solitary waves that act as energy traps. In the presence of reactive chemistry, we show that the trapping of the
released chemical energy in solitary waves that are excited by an initial perturbation provides a positive
feedback that enhances the reaction rate and leads to supersonic explosion front propagation. These modes of
rupture observed in our model may provide a first-order description of ultrafast reactions of heterogeneous
mixtures under mechanical loading.

DOI: 10.1103/PhysRevE.65.026609 PACS number~s!: 43.25.1y, 81.40.Np, 62.50.1p
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I. EXPERIMENTAL MOTIVATIONS

Diffusion transfers of mass or heat usually control fro
propagation associated with solid phase chemical react
or phase transformations. As a consequence, the veloci
fronts is small and even negligible compared to the so
velocities of the reactants and of the products. Typical so
solid reactions such as Ta1C→TaC or solid-liquid reactions
such as 2Al1Fe2O3→Al2O312Fe, characterized by ex
tremely high activation energies, can react in the combus
mode and these rates are determined by the preheatin
reactants by thermal conduction. The combustion front
locity is proportional toAk/t, where the thermal diffusivity

k5
k

rCp
'

O~101!

O~103!3O~103!
'O~1026!,

and the characteristic reaction timet51/k0e2E/RTad

'O(1022). Therefore, the reaction front velocity is of th
order of n}Ak/t'O(1022) m/s. Thus, diffusive transfe
cannot explain events propagating at front velocities m
faster than cm/s, such as detonations or deflagrations, ex
sive recrystallization, photoinduced reactions, and the h
pressure heterogeneous reactions studied by Bridgman i
pioneering work and later by Enikolopyan.

The ultrafast reaction of heterogeneous mixtures un
mechanical loading is particularly intriguing. In 1935, Brid
man reported results of combined hydrostatic pressure
shear for a wide variety of materials@1#. Whilst most sub-
stances underwent polymorphic transformation, some
acted rather violently. In contrast to PbO, that decompo
1063-651X/2002/65~2!/026609~13!/$20.00 65 0266
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quiescently to a thin film of lead, PbO2 detonated and residu
of Pb was found afterwards. Reactive mixtures produc
even more violent results: Stoichiometric mixtures of Cu a
S detonated at applied axial load of 2 GPa~even without
applied shear!, producing CuS. More exothermic reaction
such as Al/Fe2O3 proceeded in a detonationlike manne
damaging parts of the press—this reaction was initiated
hydrostatic pressure between 1–3 GPa, even without ap
cation of shear.

Russian scientists actively continued the work of Brid
man. Enikolopyan and co-workers studied many syste
both endothermic and exothermic in Bridgman anvils a
high-pressure extruders@2–10#. They expanded the list o
compounds that were originally investigated. Thermite m
tures of Al and Fe2O3, pressed into discs of thickness 4 mm
reacted completely within 100 ms@7,9# ~which, if nucleated
from a side would correspond to a velocity as large as 40
m/s!. The anvil was destroyed and the lack of plastic def
mation in its fracture zones points to a detonation. Partic
were ejected from cylindrical preforms~samples were no
radially contained! at velocities up to 2000 m/s@11#. Reac-
tions were accompanied by the emission of light and hi
energy electrons, acoustic emission, and gamma radia
@5#. The experiments of Enikolopyan lend further proof
the existence of structural collapse. In order to explain
required level of mixing for these rates, the reactions m
have been preceded by decomposition steps that consi
either a phase change~solid to liquid or supercritical fluid! or
mechanical disintegration~pseudovolumetric fracture! or a
combination of them. The results for the thermite reaction
particularly intriguing, since the particle sizes are so la
©2002 The American Physical Society09-1



he
si
nl
o

in
ic
a

se
f
,
di

N
i
s

f
ib
-
m

at
fo
io

ca

a
n
o
ic

a
as

e
a

e

y
ies
ke

ge
e

e

a
m
c

a
a

rom
duc-
ical
ena

k

ed
ms
w

f
le
her

en
de-
a-

de-
he
ifica-
ds a
e-

and
But
unt

iled
el.

ons
An
e
of

to-

e
ble
in
ex-

ing,
ns-

that
ene,
ct.
h
non
els
tal

um

VILJOEN, LAUDERBACK, AND SORNETTE PHYSICAL REVIEW E65 026609
(300mm<fAl<1000mm;fFe2O3
'1000mm) that the sys-

tem would otherwise have difficulty to ignite and react in t
normal self-heat-sustained mode. To explain such conver
rates on the basis of diffusion and thermal conduction o
the reacting particles would have to be clusters of 5–6 m
ecules.

Fast decomposition of a metastable phase under stra
through the coupling between chemistry and mechan
strain has also been observed in glassy semiconductors
metals, as well as in a geological context@12,13#. The
‘‘Prince Rupert drops,’’ and more generally, tempered glas
under high-strain condition, which explode as a result o
mechanical stimulation@13,14# is a spectacular example
which has remained a mystery for several centuries. Stu
of detonation of classical solid explosives~such as heavy
metal azides, which are compounds bearing the group3!
also reveal the existence of a fast propagation regime w
velocities of the order of the sound velocity in solid matrice
before the gas explosion stage@15#. The explosive nature o
recrystallization of amorphous materials has been descr
by Koverda@16#. Hlavacek@17# has observed a clearly dis
tinguishable thermal wave when intensely milled aluminu
powder transforms from amorphous~and highly plasticized!
state to polycrystalline state. Fortov and co-workers@18# ap-
plied high current densities to thin Nb-Ti wires in a cryost
They have measured propagation velocities, for the trans
mation from the superconduction to the normal conduct
phase of 10–12 km/s.

In a different context, it has been shown that chemi
waves propagate at very low temperature@19,20# and at
usual temperatures@21# at rather high velocities, due to
coupling between chemistry and mechanical deformatio
In the context of cryochemistry of solids, there is evidence
a transition between slow and fast heat-mechanochem
wave modes and possibly gasless detonation@22#. This
physical phenomenon may be very important, as the fast
towave concept may help to explain the mystery of f
chemical evolution of substances in the universe@23#. It has
also been proposed that catastrophic geotectonic phenom
such as earthquakes, may be triggered by gasless deton
processes of phase transformations in the earth’s crust~for
example, explosive decay of a metastable glassy stat
rocks to a more stable, polycrystalline phase! @24,25#. This
hypothesis of phase transformations of rocks induced b
high value of the strain may resolve a number of difficult
with the current purely mechanical theory of earthqua
@24#.

The experimental results described above strongly sug
the importance of a coupling between chemistry and m
chanical deformations. Batsanov@26# pointed out that, with
increased pressure, ionic compounds rearrange valence
tron density distributions and the Szegeti charges~i.e., the
actual degree of ionization of the atoms in ionic crystals! are
reduced until a state of decomposition is reached. Gilm
has shown that shear strain changes the symmetry of a
ecule or of a solid and is thus effective in stimulating rea
tions, much more so than isotropic compression@27–29#.
The reason is that a shear strain displaces electronic b
energies in a different way, thus leading in general to a n
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rowing of the band gap separating the valence bands f
the conduction bands. When the gap closes, the semicon
tor solid becomes metallic that triggers a strong chem
reactivity. This process belongs to the class of phenom
grouped under the term ‘‘mechanochemistry’’@30# and is
also at work in the motion of a dislocation by that of kin
~leading to plastic deformation!. Indeed, the motion of a kink
is akin to a local chemical reaction in which an embedd
‘‘molecule’’ is dissociated, and then one of the product ato
joins with an atom from another dissociation to form a ne
‘‘molecule’’ @28#. Gilman has also proposed@31# that intense
strain deformation~which, therefore, leads to bending o
atomic bonds! occurs in a very narrow zone of atomic sca
that can propagate at velocities comparable to or even hig
than the velocity of sound in the initial material.

II. PREVIOUS WORKS ON SHOCK WAVES
AND EXPLOSIONS

A. The limits of conventional theory of shock waves and of
explosions and the need for nonequilibrium

mechanochemistry

The initiation and propagation of shock waves have be
studied for many years and the mainstay of theoretical
scription is still the macroscopic Rankine-Hugoniot equ
tions, augmented by the Chapman-Jouguet~CJ! processes
@32#. This theory has proven to be remarkably accurate
spite its simplicity, but it has certain restrictions and over t
years the theory has evolved and it has seen some mod
tions. For example, the Chapman-Jouguet process yiel
constant value for the velocity of the reaction front with r
spect to the unreacted phase. Sano and Miyamoto@33# have
developed an unsteady state Rankine-Hugoniot theory
pointed out the deficiencies of the steady state theories.
arguably the greatest shortcoming of the theory to acco
for the above mentioned experiments is the lack of deta
description of events that occur on the microscopic lev
Erpenbeck@34# combined molecular dynamics~MDS! and
Monte Carlo methods to study diatomic exchange reacti
and showed qualitative agreement with the CJ theory.
interesting finding of that study is the relatively long tim
required to reach equilibrium. This raises the question
nonequilibrium reactions, specifically in the setting of a de
nation. White and co-workers@35# analyzed a similar system
by MDS and their findings also confirmed the validity of th
CJ theory only once equilibrium is established. Considera
effort has been focused on excitation and nonequilibrium
molecular crystals, due to their importance as secondary
plosives. Dlott and Fayer@36# and Kim and Dlott @37#
showed that, during the incipient phase after shock load
bulk phonon modes are excited first and then energy is tra
ferred to intramolecular modes through doorway modes
are most conducive to the transfer. In the case of naphtal
equilibrium is only reached 200 ps after a 40 kbar impa
Coffey @38,39# studied the interaction of molecules wit
compressive waves and developed a model for multipho
excitation of intramolecular vibrational modes. These mod
have proven invaluable in the interpretation of experimen
results under conditions where thermodynamics equilibri
9-2
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is reached at the microscopic scale. However, as summa
in Sec. I, there are now an increasing number of experim
which cannot be understood within the conventional fram
work.

B. The two fundamental mechanisms

Two mechanisms have recently been identified as po
tial candidates for explaining very fast phase transforma
and explosions in solids:~1! The products are mechanical
stronger than the reactants leading to mechanical sh
waves@25,40,41#; ~2! the released energy is sufficiently larg
and its release rate is so fast that its transfer to microsc
degrees of freedom literally boosts and propels atoms to
lide against each other leading to supersonic chemical fr
@29,31,25#.

Courant and Friedrichs@32# have studied wave propaga
tion of finite amplitude in elastic-plastic materials an
pointed out that shocks are not possible when the str
strain characteristics of plastic material is of the weaken
type. Sornette@25# adapted this one-dimensional~1D! for-
malism to study the opposite case in which the products
more elastically rigid than the reactants, and the densit
smaller for the products than for the reactions, leading t
larger sound velocity for the products. Under these rat
special conditions, a shock develops that propagates at a
locity intermediate between the acoustic wave velocities
the reactions and products. Consider a bar of material
formed uniformly with an initial strain everywhere along
Suppose that a localized perturbation or inhomogeneity p
duces a local deformation larger than the initial strain at
left boundary of the bar. Qualitatively, the density perturb
tion will start to advance to the right in the product pha
Since the velocity is larger in the product phase, the larg
deformations propagate the fastest. An initial smooth dis
bance will progressively steepen and a shock will eventu
form. The shock is fundamentally due to the stiffening tra
formation from reactants to products. The importance of t
condition was independently recognized by Pumir a
Barelko@40,41#, using a slightly different formulation. Thei
framework coupling the elastic wave equation to a reacti
diffusion equation allowed them to reveal the existence
supersonic modes of deformations with the existence o
critical strain necessary to ignite gasless detonation by lo
perturbations.

The second mechanism discussed by Gilman@29,31# is
illustrated in Fig. 1~see also, Ref.@25#!. A one-dimensional
chain is made of atoms of massm linked to each other by
energetic links of spring constantk, which when stressed
beyond a limit, rupture by releasing a burst of energyDg
converted into kinetic energy transmitted to the atoms.
tially, the chain of atoms is immobile. Suppose that the fi
atom on the left is suddenly brought to a position that ent
the rupture of the first bond. This rupture releases the en
Dg, which is converted into kinetic energies of the ato
fragment that is expelled to the left and of the next atom
the right that becomes the new left-boundary of the cha
Now, due to the impulsive boost (Dg/m)1/2 that the bound-
ary atom received, obtained by assuming that the relea
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energyDg is equally divided between the expelled fragme
and the next atom to the right, this boost will eventua
stress the bond linking it to the next atom towards its rupt
threshold. When this occurs, it is expelled by the energy t
is released and the next atom forming the new boundar
itself boosted suddenly by the amount (Dg/m)1/2. It is then
clear that this leads to a shock propagating at a velo
larger than the sound velocity equal toc5(k/m)1/2 in the
long wavelength limit, since the atoms are receiving boo
that accelerate their motion faster than what would be
propagation by the springs with the usual acoustic wave
locity. Taking the continuous limit, Gilman@28# proposes
that the resulting supersonic shock velocityU is given by the
Einstein formula U25c21Dg. This approximate semi-
empirical formula assumes that the bond energy would
entirely or almost entirely converted into the boosts w
close to 100% efficiency, an assumption that can be teste
comparison of the predicted shock velocity with experime
@28#. Furthermore, it does not distinguish between parti
and wave velocities and its theoretical status is unclear
however, appears to have empirical merits and we mentio
here also because of its intuitive underpinnings. We a
stress that the basic element of the model is not a uni
atom and its bond to the next atom, but rather a supra-ato
element comprising at the minimum the unit cell linked
the next, in general, by several noncolinear bonds. Thi
similar to the mesoscopic modeling strategy developed
low. Therefore, the compression of the effective bond fro
one cell to the next corresponds to additional shear and
tational deformation modes of the cells.

The validity of the second mechanism has also been
plored with a one-dimensional microscopic model for t
propagation of a detonation specially adapted to solids@42#.
It couples a nonlinear equation for the elastodynamics of

FIG. 1. A one-dimensional chain made of blocks linked to ea
other by energetic links, which when stressed beyond a given
formation threshold, rupture by releasing a burst of energy c
verted into kinetic energy transmitted to the blocks. The figu
shows two successive bond ruptures that lead to velocity boos
the ejected fragments on the left and to the boundary blocks.
9-3



xo
th

b
it

ea
a
le
o
n
a

th

he
na
o
m

E
i

y

es
di
W
be
, t
pe
pr

m
op
le
s

e
m
ed
tt
e

t t
tu

fo
th
lls
ti
th
ge
a

is
y-
a
ud
od
h

mic
tion.
lit-
lo-

da
es

of
ny

rac-
hile
be-
that
lu-
rge
ked
da
re-

re-
po-
een
ter-
-
es.
ell
te
-
eir
non
the
tive
nd
ed

ble
or

ain
is

ants
r-
ate a
di-
ntial
tic
its

of-
of
els.
as

on
cur-

ugh
the
tion
-

a
ree
be

VILJOEN, LAUDERBACK, AND SORNETTE PHYSICAL REVIEW E65 026609
crystal lattice to an equation describing the molecular e
thermal chemical reaction. An essential ingredient of
model is that the chemical reaction sustains the shock
giving a positive acceleration to the atoms, consistent w
the second mechanism discussed previously@25,29,31#. In
return, the shock is assumed to promote the chemical r
tion by the effect of the violent mechanical distortions th
are responsible for strong forces acting on the molecu
When the strength of the positive feedback of the shock
the chemical reaction is beyond a threshold, the detonatio
found to switch from a low-energy low-speed regime to
high-energy high-speed regime. The earlier model for
propagation of a detonation in a molecular solid@43,44# also
captured the property of pumping kinetic energy into t
system by bond rupture. This model with a two-dimensio
lattice of diatomic molecules connected by Morse
Lennard-Jones potential with a predissociative exother
intramolecular potential gives detonations that propagate
coherent waves that are resistant to thermal fluctuations.
tensions to three-dimensional molecular dynamics and to
homogeneous energetic crystals are found respectivel
Refs.@45# and @46#.

III. MODELING STRATEGY USING THE REACTIVE
TODA LATTICE

The understanding of the conditions under which th
two mechanisms will be active in real materials is at a ru
mentary stage, not to speak of their possible interplay.
need models that allow us to explore the relationship
tween nonequilibrium processes at the microscopic scale
chemical reactions, and the possible development of su
sonic shocks and explosions. To achieve this goal, we
pose to use a mesoscopic approach describing how the
croscopic processes self-organize into dynamic macrosc
structures of patterns and waves. The fundamental prob
and therefore, the challenge, in any mesoscopic model lie
the compromise between scale~macroscopic limit! and detail
~microscopic limit!. The compromise proposed here is bas
on the Toda lattice@47#, which is a one-dimensional syste
of entities interacting through an interaction potential limit
to nearest neighbors. Using a coarse-grained discrete la
allows us to perform simulations on large systems at tim
large as compared to all the relevant times scales so tha
characteristics of the self-organization behavior can be s
ied in details.

The advantage of the Toda lattice are multifold. First,
small deformations corresponding to small deviations of
position of the atoms from the bottom of the potential we
linear elasticity is recovered. In this regime, the acous
waves~phonons! are nondispersive in the large waveleng
and small amplitude limits. Its nonlinear potential at lar
deformation leads to mode coupling, which, as we sh
briefly discuss, gives naturally the Maxwell-Boltzmann d
tribution of energies. Thus, with a purely deterministic d
namics~Newton’s equations! on a minimal model, we have
basic thermodynamics that we can then enrich to st
chemical reactions coupled with mechanical strain. The T
lattice has dispersion at nonvanishing frequencies, whic
02660
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adequate to capture the effect of the microscopic ato
structure as well as any possible mesoscopic organiza
The Toda lattice has been extremely well studied in the
erature as a remarkably simple system exhibiting stable
calized collective excitations, called solitons. The To
model is known as the only integrable one in atomic lattic
but we do not use this remarkable property.

Solitons are a particular set of a more general class
solitary waves or moving discrete breathers found in ma
lattice systems with both dispersion and anharmonic inte
tions @48#: the dispersion tends to disperse the modes w
the nonlinearity tends to concentrate them. The resulting
havior is a localized coherent nonlinear wave. We stress
our choice of the Toda potential does not restrict our conc
sions as similar solitary waves can be observed for a la
class on nonlinear potentials. In particular, we have chec
that Taylor expansions of the exponential terms in the To
potential truncated at different orders do not change our
sults at the qualitative level. We think that the results
ported below are robust to a generalization of the Toda
tential. Indeed, recently, the existence of solitons has b
established in anharmonic lattices for a large class of in
atomic potentials@49,50#. It is true that our use of a one
dimensional model favors the existence of solitary wav
However, nonlinear classical Hamiltonian lattices are w
known to exhibit generic solutions in the form of discre
breathers@48#, which are time periodic and typically expo
nentially localized in space. Necessary conditions for th
occurrence are the existence of upper bounds on the pho
spectrum of small fluctuations around the ground state of
system as well as the nonlinearity. Nonstable but propaga
long-lived local concentration of energy are also often fou
and should play a similar qualitative role as the one play
by solitons in the present model.

We modify the classic Toda model to include metasta
states and the possibility for a phase transformation
chemical reaction. Specifically, beyond a certain str
threshold, the potential felt by the particles of the lattice
modified to represent a change of phase from the react
~initial lattice! to the products. In contrast to regular dispe
sive waves, solitons act as energy traps because they cre
dynamic state where the local energy flux points in the
rection of wave propagation. As a consequence, the pote
energy, which is released during the reaction as kine
energy, can be trapped within the soliton, enhancing
localization and its velocity. This process occurs out-
equilibrium, i.e., without equilibration with other degrees
freedom and can thus focus energy to extremely high lev
In our knowledge, a Toda lattice with chemical reaction h
not been studied before.

More generally, the Toda lattice should also shed light
several issues in ultrafast solid phase reactions that are
rently not understood. When the shock wave travels thro
a particle, either fracture or melting must occur, because
high reaction rates can only be explained by the genera
of large surface areas. Toda@47# mentions that the Toda lat
tice has a property called ‘‘chopping phenomenon.’’ When
soliton, which is a compressive pulse, is reflected at a f
boundary a temporary tensile pulse develops that could
9-4
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SOLITARY WAVES AND SUPERSONIC REACTION . . . PHYSICAL REVIEW E65 026609
causal in spalling or fracture near the free boundary. Si
the tensile soliton is unstable, it degenerates into a serie
pulses and there is a rapid transfer of energy from the sol
to thermal vibrations of the lattice.

IV. THE CLASSIC TODA LATTICE „TL … MODEL

Here, we introduce the classic Toda lattice~without reac-
tion! and investigate the lattice equilibrium. Local departu
from equilibrium are demonstrated for solitons in inert la
tices~with no metastable states! and the problem of nonequi
librium is discussed.

A. Definition

The Toda lattice is a model of a one-dimensional chain
atoms. Consider a one-dimensional lattice consisting oN
particles. Each particle is described by a point of massmn
that only interacts with neighboring masses. Hence, het
geneities, discontinuities, pores, and perfectly isotropic st
are all defined by the pairwise values of the interaction
tential and masses. The displacement of thenth mass from
its equilibrium position isyn(t). The relative displacement i
defined asr n5yn112yn . The lattice motion is described b
the following canonical equations:

m
d2r n

dt2
5f8~r n11!22f8~r n!1f8~r n21!, ~1!

wheref8 denotes the first derivative of the potential functi
with respect to the relative displacement. In his search fo
integrable lattice that also exhibits realistic mechanical
havior, Toda used a recursive formula to find periodic a
single soliton solutions. As a result, the potential function

f~r !5
b

a
e2ar1br ~ab.0!, ~2!

was proposed. Application of this choice in Eq.~1! gives the
Toda lattice ~TL!. Note that the integrability of the Tod
lattice makes this system~1! special because it exhibits b
construction an infinite number of invariants@47,48#. The TL
equations can also be written in terms of the displaceme

m
d2yn

dt2
5b@e2a~yn2yn21!2e2a~yn112yn!#. ~3!

While the TL model is 1D and mesoscopic in nature, we s
want to use parameters that are realistic. As an illustrat
we use the properties of Al to determine the parameter
Eq. ~3!. If a51/l, wherel is the athermal lattice constan
54.5 Å and the cold longitudinal sound velocity isc0
56420 m/s, it follows thatb54.131029 N. The model is
written in nondimensional form:t→tc0 /l and y→y/l.
Later, we will look at the effect of chemistry in a simplist
manner by changing the parameters of the potential func
~more details in Sec. V!. Let a8 andb8 be the new paramete
values due to the chemical reactions that will be int
duced in Sec. V. We define the dimensionless parametea
02660
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5a8/a, b5b8/b. Thus, a5b51 are the values used t
model the standard~nonreactive! lattice. The nondimensiona
TL equation becomes

d2yn

dt2
5b@e2a~yn2yn21!2e2a~yn112yn!#. ~4!

B. Energy partitioning in the Toda lattice

1. The Maxwell-Boltzmann distribution

If the TL is a fair description of a chain of atoms an
nonlinear springs, one would expect that in the absence
external forcing, the lattice should approach a thermo
namic equilibrium state. We specify below what we me
with respect to the known organization of TL and for th
application to the chemical reactions discussed below.

A first approach would consist of defining the modes
vibrations and investigating the partition of total energy b
tween them. This approach is prone to difficulties since
atomic degrees of freedom are coupled anharmonically
the Toda potential. Thus, the definition of an element
wave oscillator as an extended quasiparticle is somewha
bitrary. Actually as a consequence of integrability, the To
Hamiltonian decouples exactly in terms of two kinds of tra
eling excitations, namely, cnoidal waves that are the anh
monic counterpart of phonons and aperiodic solitons.
these quasiparticles have infinite lifetimes~in infinite sys-
tems!, they cannot decay into one another so that therm
zation is ultimately precluded in the strict sense by integ
bility. Any configuration is bound to recur in future time a
least quasiperiodically and is thus not consistent with
Maxwell-Boltzmann distribution.

However, having in mind using the TL as a mesosco
representation of a system undergoing a fast chemical r
tion, we would like to define a local effective temperatu
describing the agitation of local masses in their local non
ear potential. If we can show that there is the analog of
approximate Maxwell-Boltzmann distribution for the loc
degrees of freedom of the vibrations, we will be able
contrast this ‘‘thermal’’ agitation with the more coherent a
much faster motions involved in the explosive chemical
action. We will be able to conclude that the chemical react
is mostly athermal, i.e., mostly controlled by solitary stru
tures. In such a fast out-of-equilibrium chemical reactio
notwithstanding the observation of energy equipartition
the local vibrations over long time scales, the chemical re
tions will be seen to occur so fast that only solitary structu
can contribute significantly to them.

To achieve this goal, we term ‘‘oscillator’’ a mass with i
kinetic energy plus local nonlinear potential energy. The
is thus a chain of ‘‘oscillators.’’ The question we ask
whether a local subset of oscillators that are initially mo
excited should exchange energy with neighbors so that in
end the Maxwell-Boltzmann distribution is recovered for t
distribution of energy carried by these local oscillators. It
well known that the TL model is not ergodic~due to the
integrability property!, but that does not exclude energy sha
ing. We show below that this state is described by
Maxwell-Boltzmann distribution for the translational degre
9-5
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VILJOEN, LAUDERBACK, AND SORNETTE PHYSICAL REVIEW E65 026609
of freedom. Indeed, since the total energy of the system
conserved~in the absence of dissipation!, this corresponds to
the microcanonical ensemble and the relevant observa
are the energy of the microscopic degrees of freedom.

We denote the instantaneous velocity of an oscillator ac
and decompose it into a drift or wave componentw and a
random fluctuating componentn. When the oscillations are
resolved on the time scale associated with the Debye
quency~which is basically the period of a thermal vibration!,
the question is how do we discriminate between motion
sociated with thermal fluctuation and motion associated w
an event like a wave that propagates through the lattice?
oscillator does not discriminate, it only responds to the i
mediate force, be it of thermal or mechanical~wave! origin.
The numerical results of Fig. 2 pertain to a situation wh
no external force was applied, in other words, we did
have a drift componentw and the velocity of each oscillato
was taken to bev. The stochasticity was introduced throug
the initial conditions of the oscillators; the initial condition
were zero velocity for all oscillators and random displac
ment between@2W,1W#, whereW is an input paramete
for the system. The largerW, the larger the input energy. Th
Toda lattice was then integrated for these random initial d
placements and zero velocities.

If the chain is in equilibrium, it has a Maxwell-Boltzman
distribution parameterized byT. This means that the prob
ability to find a state of energyE is e2E/kT, wherek is the
Boltzmann constant~whose sole use is to convert a tempe
ture scale into an energy scale! and T is the ~temperature!
parameter that quantifies the degree of excitation or diso
of the vibrations within the lattice. Using the form~2! for the
potential energy, the Maxwell-Boltzmann distribution read

FIG. 2. Maxwell-Boltzmann distribution~--! and TL distribution
of energies carried by local ‘‘oscillators’’ defined as single ma
plus their local nonlinear potential energy. The results have b
obtained for a chain of 201 oscillators integrated over a total
duced time equal to 500. We use the nondimensional TL equa
~4! ~with a5b51, since chemistry is not considered here!. There-
fore, the energies are dimensionless.
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2k
~units K!, ~5!

where we have used the expression of the total energy
given oscillator~a spring1mass! as the sum of the potentia
energy stored in the spring and the kinetic energy associ
with the stochastic component of the mass velocity.

The dimensionless potential function is defined as

F5
b

a
@e2a~yn112yn!21#1b@yn112yn#. ~6!

This distribution ~5! should be calculated by counting th
number of oscillators in a given energy bin. For this, w
integrate the nondimensional TL equation~4! ~with a5b
51, since chemistry is not considered here! and construct the
histogram of the energy of individual oscillators using t
cumulative statistics over all the elements in the lattice a
over time. Assigning random initial displacements of the l
tice points uniformly distributed in@2W,W#, the density
distribution of the oscillators over energy space has the fo
shown in Fig. 2 where it is compared with the Maxwe
Boltzmann distribution.W is thus the characteristic scale o
the energy put initially inside the TL. Figure 2 has be
constructed with the choiceW50.081 that is best matche
by the Maxwell-Boltzmann distribution at the temperatu
T5297 K. By performing several runs, we verify thatT is
proportional toW, indicating that higher input energy resul
in higher temperature. This is an important test of our mod
In addition, we kept the boundaries free in these numer
experiments and observed thermal expansion. It is actu
quite interesting that the linear expansion that occurs co
pares quite favorably with the linear~volumetric/3! expan-
sion coefficient of aluminum~recall that thea andb values
of the potential correspond to aluminum!.

To further test for the relevance of the Maxwe
Boltzmann distribution, we have also constructed the dis
bution over a single oscillator~for instance the 50th oscilla
tor! and by summing the statistics over a time intervalDt. As
Dt increases, we verify that the energy distribution of
single oscillator is also well-described by the Maxwe
Boltzmann distribution. This result implies that the stochas
component of a typical oscillator velocity added to its pote
tial exhibit an approximate ergodicity property.

These results recover those of Saitoet al. @51# who found
that, for finite chains bounded by two reflecting walls wi
strong nonlinearity, an ergodic state occurs correspondin
strong stochasticity, which is consistent with the predicti
of Israilev and Chirikov@52#.

2. Nonequilibrium configurations

The quest for equipartition of energy and for th
Maxwell-Boltzmann statistics from nonlinear dynamics w
first initiated by Fermi, Pasta, and Ulam, who failed@53#.
More recent works~see, for instance, Ref.@54#! have shown
the subtlety of this problem. In their pioneering work, Ferm
Pasta, and Ulam revealed that even in strongly nonlin
one-dimensional classical lattices, recurrences of the in
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SOLITARY WAVES AND SUPERSONIC REACTION . . . PHYSICAL REVIEW E65 026609
state prevented the equipartition of energy and conseq
thermalization. The questions following from this study i
volve the interrelations between equipartition of energy~Is
there equipartition? In which modes?!, local thermal equilib-
rium ~Does the system reach a well-defined temperature
cally? If so, what is it?!, and transport of energy/heat~Does
the system obey Fourier’s heat law? If not, what is the nat
of the abnormal transport?!. The surprising result of Fermi
Pasta, and Ulam has now been understood: under ge
conditions for classical many-body lattice Hamiltonians
one dimension, it has been shown that total momentum c
servation implies anomalous transport in the sense of
divergence of the Kubo expression for the coefficient of th
mal conductivity @55#. The anomalous transport is thus
specific feature of one-dimensional systems. Thus, our v
fication of an approximate Maxwell-Boltzmann distributio
does not prevent the existence of anomalous transpor
propagation properties as we discuss in the sequel.

It is indeed possible to perturb a small region of the latt
in such a way that these nodes depart from the equilibr
distribution and this perturbation propagates with conser
tion of form and of energy. If the chain contains many nod
the nonequilibrium state of the small number of nodes p
turbed in this coherent mode~namely, forming a soliton! will
not significantly alter the overall distribution. The trans
time of a soliton over a given oscillator is very small com
pared to the time scale over which equilibrium is achieved
the scale of a single oscillator. The transit of a soliton is th
fundamentally a nonequilibrium process. To recognize t
fact is essential for our investigation of the coupling with
chemical reaction.

Indeed, when a shock wave propagates through the lat
the distribution of the energies of the oscillators in the sho
zone is perturbed away from its Boltzmann distribution. D
pending on the magnitude of the shock~ranging from a
sound wave to a detonation!, the degree of deviation from
equilibrium could vary between insignificant to comple
Quantifying this degree of deviation from equilibrium co
stitutes one of the major dilemmas of shock theory: with
the shock zone, nonequilibrium could exist, temperat
could become meaningless and a macroscopic descriptio
chemistry with Arrhenius kinetics becomes nonsensical. O
mesoscopic approach allows us to investigate precisely
regime and the interplay between the equilibrated degree
freedom and the out-of-equilibrium impulses.

To study the effect of an external perturbation, we co
sider a force that is applied at the first node,

FL5M sinS pt

t I
D , t<t I and FL50 for t>t I , ~7!

in a system ofn5200 masses and springs. At the other e
of the chain, a mass is held immobile, corresponding to fi
boundary conditions. We identified the presence of a sol
by observing a pulse of amplitude above the noisy ba
ground that propagates at a velocity slightly above 1 M. T
same procedure will be used below in Sec. III for the oth
cases.
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The impulse~7! corresponds to a single arch starting fro
and returning to 0. The motion of the first node is then d
scribed by

d2y0

dt2
5b@12e2a~y12y0!#1FL . ~8!

The last node could be either fixed or unbounded. When
force is small, the deviation from equilibrium is slight. Ap
plication of a stronger force at the first node will cause t
creation of a solitary wave leading to a strong deviation fro
equilibrium as illustrated in a phase diagram for the 70
oscillator shown in Fig. 3. The conditions and parameter v
ues for this example are listed in Table I as case 1. T
oscillator has been in equilibrium before the first arrival
the shock wave as can be seen from the chaotic trajector

FIG. 3. Phase diagram for the 70th oscillator showing dim
sionless velocity obtained by integration of the nondimensional
equation~4! as a function of displacement from the equilibriu
position before~left chaotic region! and after~right chaotic region!
a strong impact of the oscillator by a solitary wave. The absciss
the position measured from the initial equilibrium and the ordin
is the velocity of the particle.

TABLE I. M is the maximum amplitude of the force impuls
applied at one extremity of the chain.t I is the duration of the forc-
ing applied at the boundary that creates a train of solitary wa
disturbing the equilibrium. The parameterl (l f) is the lattice con-
stant of the reactants~the products if there is a transformation!.
When both are equal~i.e., l/l151!, there is no chemical reaction
and the simulations correspond to the classic Toda lattice. The
rametersa f andb f are the ratio of the two parameters defining t
Toda potential taken for the reactions over those taken for the p
ucts. The valuesa f5b f51 correspond to the absence of any che
istry, i.e., to the standard Toda lattice.r c is the threshold for com-
pression at which the phase transformation or chemical reactio
triggered.

Case no. M tI l f /l r c a f b f

1: No
reaction

0.5 1 1 1 1

2: No
reaction

0.5 10 1 1 1

3 0.5 10 0.9 20.3 1.5 3.0
4 0.5 10 1.1 20.2 0.9 0.8
5 0.5 10 1.1 20.2 1.1 1.5
9-7
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FIG. 4. Strain profiles at time
t5100 of case 1~a! and case 2~b!
showing, respectively, 1 and 2
solitons propagating over a nois
‘‘thermally’’ equilibrated back-
ground. The position along thex
axis is given in units of the mesh
size.
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phase space shown in Fig. 3. When this oscillator is sha
by the passage of the shock, it rapidly moves away from
equilibrium state to a novel state, a new position in ph
space where it settled chaotically and equilibrates over ti
Due to the finiteness of the system used in the simulatio
the shock will reach the boundary of the lattice and be
flected at the last node~we use a fixed boundary condition
the extremityn5200 and a free boundary at the other e
tremity!. When the 70th oscillator is again shaken by t
reflected solitary wave, it undergoes a second translat
Between these strong perturbations, the oscillators can r
equilibrium provided the time intervals between the solita
wave perturbations are much longer than a vibrational
riod. In this example, the 70th oscillator started with a te
perature of 297 K before the solitary wave arrived the fi
time and finished with the temperature of 328 K after t
solitary wave was completely dissipated and final equi
rium was restored globally in the lattice. Before this fin
equilibrium was reached, the oscillator had been displa
several times by the weakening multiply reflected solita
wave. These results are consistent with previous nume
analysis by Hill and Knopoff@56#, who showed that strong
shocks in strongly nonlinear TL are led by a soliton, a
unstable and have a relatively chaotic state immediately
hind the shock front. They also found that the frequency a
velocity distributions of infinite lattices are singular and i
consistent with the vibrational properties of a thermodyna
cally equilibrated crystalline solid at nonzero temperature

In the next example~case 2!, the durationt f of the applied
force is extended ten times such that it becomes slig
larger than twice the dimensionless natural period 2p/A2ab
of oscillation of the oscillators, obtained by expanding E
~4! to linear order and thus neglecting dispersion. The str
~relative displacement! profiles along the lattice of cases
and 2 are shown in Fig. 4 att5100. There is a distinc
difference between the two profiles. In case 1, the solit
wave travels as a single perturbation through the med
with velocity close to 1 M. In case 2, the initial perturbatio
has split into two solitary waves. The leading one has a
locity of 1.08 M and the second wave travels at 1.02 M.
a consequence, as time progresses, the distance betwee
two waves of case 2 increases. The solitary waves in ca
conserve their form as they pass through each other, co
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tent with the original studies of Zabusky and Kruskal@57#,
defining them as ‘‘solitons.’’ At the free boundary, the so
tons are destabilized and their energy is transferred to
lattice. The energy near the free boundary thus increase
ter the soliton has been reflected and a ‘‘hot spot’’ is gen
ated.

The system was integrated until equilibrium at which t
temperature finally reached by the system was 517 K in c
2 compared to 328 K in case 1. The higher temperature
case 2 is expected, since considerable more energy has
injected into the system. An interesting observation is
creation of multiple waves whose number is given by t
integer of t f /5. For t f less than 5, no solitary structure wa
observed, only strong concentrated acoustic waves propa
ing at 1 M and dissipating within the lattice at they prop
gate. When the~dimensionless! impact time are 5, 10, and
20, one, two, and four solitons are formed, respectively. A
other interesting result is the effect of impact strengthM
defined in Eq.~7!. WhenM decreases to zero~regardless of
impact time!, the perturbation does not split into separa
solitons. Instead, it travels as a single perturbation wh
velocity approaches 1 M. This derives from the well-know
fact that the propagation velocity of a Toda soliton decrea
as the amplitude of its associated strain field decreases
eventually equates the sound velocity for vanishing am
tude. The relationship between amplitude and velocity
completely determined by the parameters defining the T
model.

When the impact strength is small, the system is
equately described by a linear system~linearization of the
exponential terms! and the velocity of any wave is dete
mined by material properties alone. When the imp
strength increases, the nonlinear interaction becomes pr
nent and the wave speed is no longer determined by mat
properties alone, but also by the magnitude of the imp
This reflects the fundamental property of solitons and m
generally of solitary waves to result from the competiti
between dispersion~which tends to have waves at differe
frequencies propagate at different velocities! and nonlinear-
ity ~which tends to concentrate waves into sharp shocks!.

The stability of solitons and the instability of dark soliton
are thoroughly investigated in the literature~cf. @47#!. Soli-
tons keep energy focused in a small region of the chain
9-8
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SOLITARY WAVES AND SUPERSONIC REACTION . . . PHYSICAL REVIEW E65 026609
the energy does not disperse to the rest of the chain—a
riously stable, albeit nonequilibrium state. This is a cle
indication that energy transfer in the soliton must occur
clusively in the direction of propagation. The energy flux
only directed in the direction of propagation. This property
essential for understanding our results reported below of
coupling between the mechanical deformation associa
with solitary waves and chemical reactions occurring in
lattice. Indeed, if chemical energy is released in the soli
and if it retains its coherent nondispersive localized structu
it is possible to focus energy within this solitary wave to ve
high levels.

V. CHEMICAL REACTION IN THE TODA LATTICE

We now define and study the reactive lattice undergoin
chemical transformation. This model can be easily gene
ized to an axisymmetrical 2D geometry. The terms ‘‘chem
cal transformation’’ and ‘‘chemical energy’’ are used in
loose sense. We envision the following experimental sit
tion in which a mechanical system can suddenly underg
phase transformation or a chemical reaction when its lo
mechanical deformation reaches a threshold. This can oc
for instance, according to the mechanisms of Batsanov@26#
and Gilman@27–29# in which the distortion of the lattice by
shear strain moves the electronic bands, leading eventua
a closing of the band gap~metallization! and, therefore, to a
sudden strong chemical reactivity. In our system, we s
account for the existence of a phase transformation or
chemical reaction by introducing a potential energy sou
when the relative displacement~strain! r n5yn112yn at
some point in the lattice reaches a critical thresholdr c . Thus,
when two nodes are sufficiently compressed so that the r
tive displacementr n becomes smaller than the thresholdr c ,
we assume that the initial system~reactants! is transformed
into a new phase~products! characterized by different pa
rameters for the potential function defined in the right-ha
side of Eq.~4!, as shown in Table I. Note that the transfo
mation occurs and the ‘‘chemical energy’’ is released o
when the material is in the compressed state. In this desc
tion, the released chemical energy could refer to the ene
difference between phases, to an amorphous-crysta
transformation, or a chemical transformation. Chemical re
tion between different species necessarily involves the is
of mixing, which is not addressed in the present study. In
discrete model, the reaction nucleus is the size of the lat
mesh. Recall that a mass and its local environment are
describing the atomic scale but an effective mesosco
scale. This implies that the physical size of the nucleus is
larger than the mesh size. A genuine description of the c
cal nucleus would require a more complex three-dimensio
Hamiltonian with a microscopic spatial resolution.

The general result established in statistical physics,
there are no equilibrium phase transitions in one dimens
is not relevant to this work. This is because we define
chemical phase transition from a phenomenological poin
view involving an effective description of the many degre
of freedom embodied by a single element at the mesosc
level. In other words, our model is not one-dimensional fro
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a microscopic point of view. Recall that a similar remark h
already been formulated above with respect to the differe
between the nature of the strain at the mesoscopic level
that at the atomic level.

Some complication may occur as a chemical react
brings additional time scales into the system. Here, we
sume that the time scale for the release of chemical energ
much shorter than the time scales involved in the wa
propagation. To investigate the interplay between mechan
waves and chemical energy release at a phenomenolo
level, the interaction potential is irreversibly changed into t
following expression:

F f5
b f

a f
H expF2a f S yn112yn1

l2l f

l D G21J
1b f@yn112yn#, ~9!

whenr n becomes smaller thanr c . The lattice constantl f of
the product state could be smaller or larger thanl. Three
different cases are investigated, the first case~case 3 in Table
I! describes a product that is denser~i.e., l f,l!, the second
case~case 4 in Table I! describes a material with larger la
tice constant (l f.l) and smaller sound velocity, and th
third case~case 5 in Table I! describes a product with large
lattice constant and larger sound velocity than the initial m
terial. The parameters are listed in Table I.~The interaction
potentials before and after the reaction are made continu
at r 5r c by adding a constant toF f .!

Case 3 (cf. Table I): l f50.9l. We introduce an initial
perturbation that is strong enough to initiate the chemi
reaction. The time evolution of the reaction is presented
Fig. 5 in a set of six sets of two panels: The panels on the
show the displacements as a function of distance along
1D-lattice for six different times increasing from top to bo
tom. The panels on the right show the corresponding che
cal conversion profile~0 corresponds to the initial chemica
composition; 1 means full conversion to the products of
chemical reaction!. Acoustic waves created by the initial pe
turbation and the triggered chemical reaction propagate
personically through the medium in an apparently rand
way, similar to a thermal wave. The leading part of this wa
is always compressive. However, this compressive s
weakens along the propagation and about midway thro
the lattice, the conversion criterion is not met. The conv
sion halts and an ordinary acoustic wave continues to pro
gate through the remainder of the lattice with no further co
version. However, there is a subtle component of
vibration that is going to play a key role in the future evol
tion of the system.

The two top panels on the left of Fig. 5 correspond to tim
t558, at which a small soliton is ready to be spawned fro
the leading edge of the chemical reaction wave. At this sa
moment (t558), the conversion profile exhibits a sha
front located atx595 ~traveling towards the left boundary a
x5200!.

At time t570, the relative displacement along the latti
allows us to distinguish clearly the existence of the solit
that has been spawned by the reaction front. At about
9-9
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FIG. 5. Relative displacement and conversion profiles. Top to bottom and left to right,t558, 70, 229, 235, 256, and 276. The positio
along thex axis is given in units of the mesh size.
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time, the reaction front comes to a standstill atx5102. The
stagnation of this front is due to the fact that t
compression-criterion for triggering the chemical reaction
no longer met at the boundary between reacted and unrea
material.

However, the soliton continues its journey all the way
the left border atx5200, where it is reflected from the fixe
boundary to travel back towards the static chemical reac
front. Small acoustic waves spin off from the stalled fro
and propagate towardsX5200 and the approaching soliton

The soliton runs through this noisy displacement field a
at t5229 the soliton is atx5129. The conversion criterion i
met at this point and chemistry is turned on. The positiox
5129 corresponds to a point where the soliton superimpo
with a local compressive region of the ‘‘acoustic wav
gives a stress just large enough to initiate chemistry.

The panels att5235 show the soliton traveling toward
the stalled reaction front att5229. The new reaction fron
triggered by this soliton is now propagating with it to th
right towards the other stalled front. At timet5240, the new
front runs into the stalled front and no unreacted materia
left between the fronts.

We now have basically the same situation as at timt
558, when the front was located atX595. The system now
spawns another little soliton atx5129 att5252. That means
02660
s
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n
t
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that betweent5240, when the two fronts consolidated, an
t5252, no conversion happened and no front movement
discernible. But the system was breeding another little s
ton during this pause period.

In the next panels att5258, the new little soliton that ha
spun off from the reaction front atx5129 is shown to be a
x5141. It travels again towards the left boundary atx
5200. The chemical reaction front is now traveling togeth
with the soliton. The conversion profile att5258 is also
located atx5141.

Complete conversion is established aftert5282 when the
soliton and the reaction front simultaneously collide with t
left boundary of the lattice.

In summary, we have shown that the chemical react
can be fully completed after an initial triggering perturbatio
only because of the presence of solitons launched from
reaction front that interact with the ambient energetic aco
tic field radiated by the reaction front. We have also sho
that a soliton can support a reaction front. The simulatio
have demonstrated the existence of a remarkable interac
between the soliton, the ambient acoustic field, and the re
tion front. Note that the scenario shown in Fig. 5 is only o
among many similar histories that depend on the initial c
ditions and the level of preexisting ambient acoustic nois

As we have seen, the reaction front propagation can
explained in terms of the solitons existing for unreacted a
9-10
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SOLITARY WAVES AND SUPERSONIC REACTION . . . PHYSICAL REVIEW E65 026609
product solids without reaction. With (a f ,b f)5(1.5;3.0)
fixed for the unreacted solid~thenr c becomes irrelevant! and
settingl f5l, we indeed found solitons for perturbationsM
andt I values as listed in Table I. For (a f ,b f)5(0.9;0.8) and
(a f ,b f)5(1.1;1.5), we also found solitons. These solito
differed in the time to develop and their relative positio
with respect to each other. The stochastic wave pattern
which the solitons superimposed can probably be descr
in terms of cnoidal waves corresponding to extended st
field. Note that both the cnoidal and soliton excitations
supersonic and their propagation velocity increases with
strain amplitude.

Case 4 (cf. Table I): l f51.1l with a smaller sound ve
locity. A soliton is not observed for this case. The stra
profile in Fig. 6 shows an expansion of the lattice behind
wave front. Therefore, the conversion is interrupted soon
ter onset because the compression cannot be sustained
level that is strong enough. It is clear that the energy tha
released in the reaction does not contribute towards sus
ing and strengthening of the compression in the leading
of the wave. Beyond the point where the criterion for t
chemical transformation is no longer met, the wave pro
gates as an acoustic wave through the system and the
version profile becomes frozen.

Case 5 (cf. Table I): l f51.1l with a larger sound veloc
ity. A solitary wave is formed in the reactive lattice and

FIG. 6. Strain profiles for case 4. The position along thex axis is
given in units of the mesh size.
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appears to have all the properties of a soliton. Of course,
not a genuine soliton since its front separates two differ
phases, with the products left behind it and the reactant
front of it. All the chemical potential energy that is releas
during the reaction remains trapped in the solitary wa
which travels supersonically with respect to the sound vel
ity in the reactant solid. Both the compression and parti
velocities in the wave increase, thus the released chem
energy is stored as kinetic and elastic potential energy. T
case has the same qualitative properties as expansion sh
in conventional fluid mechanics, where the conditio
needed to obtain an expansion shock are the simultan
increase in velocity and in volume. These conditions con
tute quite unusual circumstances that are generally viewe
curiosities~Fig. 7!.

Note that, after its reflection from the fixed boundary
n5200, the solitary wave has ‘‘consumed’’ all the reactio
and the entire system consists of the new phase or prod
In this new phase, it becomes a bona fide soliton, trave
unaffected through the other waves in the product mate
No further chemical transformations occur and the soli
now travels with constant speed.

VI. DISCUSSION

We have presented a numerical study that suggests
solitary waves may play an important role in explosive s
personic reactions and conversions. For this, we started f
the classic TL, extending it beyond its use as a phenome
logical model for processes occurring at the atomic lev
Since most of experimental observations are performed
the mesoscopic and macroscopic levels, we use the TL
phenomenological model that embodies the minimal nu
ber of essential ingredients of the problem~nonlinear
elasticity1dispersion! to explore the different possible re
gimes. We stress that the phenomenology documented
summarized in this paper for the TL is qualitatively in agre
ment with that obtained from a continuous description ba
on the Boussinesq equation that can be further transfor
into the Korteweg de Vries equation. We have then exten
the TL to include chemistry in order to describe a react
material in nonequilibrium situation, with applications to e
plosions and detonations as well as very fast phase con
sion.
FIG. 7. Strain profiles for case 5 at~a! t560, ~b! t5160. The position along thex axis is given in units of the mesh size.
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The TL equations are deterministic but the oscillato
clearly adopt the Boltzmann distribution, thus providing t
correct analog of a thermodynamics. The equilibrium st
has been calculated by the probability of finding a giv
velocity state space both using an ensemble statistics ov
large number of oscillators at a fixed moment in time and
cumulative statistics over a long period of time for a sing
oscillator ~effective ergodicity property!. We have clearly
documented that the oscillators approach the Boltzmann
tribution at long times, that the state variables are defi
and they can be matched with the continuum model.

When perturbations as in the shock wave occur on t
scales too short to allow the oscillators to reach the Bo
mann distribution, one needs a model that takes suitably
account both equilibrium and out-of-equilibrium states a
their interactions. In this sense, the TL is ideally suited.
have, in addition, built-in chemistry by modifying the Ham
tonian at reactant interfaces to a double well potential: W
a compressive stress threshold is reached, reactants com
irreversibly to give products that are modeled by a differ
interaction potential. Chemical energy is released when
mechanical vibrations resulting from both the possible ex
tence of a solitary wave and of the rest of the vibratio
background forces a node to reach the conversion thres
and thus crosses the energy barrier.

We have observed that the released chemical energy
tially contributes to the kinetic energy of the oscillator. D
to friction ~as in the Langevin equation!, this energy tends to
be transformed over time into vibrational energy or heat
the transition zone behind the shock wave. If solitary wa
can be nucleated by the initial conditions, we have sho
that they act as traps of energy: In the presence of ong
chemical energy release, the energy piles up within the t
ping solitary wave, providing a positive feedback that e
hances the strength and velocity of the solitary wave. T
trapping property of solitons and of solitary waves res
from the fact that the energy flux within them points fo
wards in the wake. In contrast, the energy flux points ba
wards in the wake of ordinary dispersive waves resulting i
negative feedback. Thus, dispersive waves in nonreac
media dampen out, but in the presence of chemistry,
chemical energy released in the wave competes with en
losses in the wake to result in either a steady reactive w
or an attenuating wave that extinguishes. We believe
propose that the relevant point is not so much the existe
of solitons in the strict sense, but the possibility of transi
but long-lived coherent propagative concentration of ene
which can contain and concentrate the energy released b
chemical concentration for a sufficiently long time. O
course, we have not proved that this is the case in dim
n,
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sions larger than one, but offer it as a conjecture to be te
in future works.

When chemistry is included in the lattice, a nonstea
state solitary wave is observed for two cases:~1! when the
product expands with respect to the reactant and the sys
has higher sound velocity and~2! when the product is more
compact that the reaction. The first case involves a ra
peculiar combination of conditions that is a curiosity rath
than a genuinely realistic situation. The second case is m
more interesting and we have shown a complex interp
between the solitons, acoustic waves, and reaction fro
The situation thus seems much richer and more complex
obtained previously in Ref.@25# and in Refs.@40#, @41#. As
long as reactants are available, it converts the material
traps the chemical energy as elastic potential energy and
balance as kinetic energy. Within the spatial zone in wh
the chemical reaction actually takes place, the lattice
highly compressed and particles have large particle vel
ties. These velocities belong to the drift component and
the random~or thermal! component of the total velocity. The
chemical transformation is athermal as the system is far fr
equilibrium. Furthermore, the chemical energy is not direc
released as thermal energy. No energy spills over into t
mal energy as long as free boundaries or internal defects
absent. At defects and free boundaries, conversion to the
energy occurs and eventually leads to thermal equilibrium
long times.

When the product has a larger lattice constant and lo
sound velocity, a supersonic wave is observed directly a
impact. But it is not self-sustaining and disappears, leav
only an acoustic wave. There results seem to hold true in
the simulations we have performed until now which explor
a significant part but nevertheless nonexhaustive fraction
the phase diagram.

The simple model proposed here allows us to study n
equilibrium chemistry and lattice motions with great ea
The limitations of this model must also be recognized, es
cially its one dimensionality and the interactions that a
limited to nearest neighbors. Although 3D MDS are comp
tationally costly, they should be used to verify the findin
presented here. This study is underway. Finally, it would
extremely interesting to develop experimental techniques
probe directly for the existence of the long-lived propagat
concentrations of energy that we propose here.
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